

May 15

2012

PERSPEX™

Perspex Data Sheet

For glazing

APPENDIX 1- PORPERTIES

Table 1 Compares the typical physical and mechanical properties of cast and extruded sheet.

Properties Method	TEST	Units	Pespex CS Cast Sheet	Perspex XT Extruded Sheet
Ten Sile Strength	ISO 527 (1)	MPa	75	70
Elongation at Break	ISO 527 (1)	%	4	4
Flexural Strength	ISO 178 (2)	MPa	116	107
Flexural Modulus	ISO 178 (2)	MPa	3210	3030
Charpy Impact Strength	ISO 179 (3)	kJ.m ²	12	10
Vicat Softening Point	ISO 306 Method A	°C	>110	>105
Rockwell Hardness	ISO 2039-2	M Scale	102	101
Light Transmission	ASTM D1003	% (4)	>92	>92
Refractive Index	ISO 489/A	-	1.49	1.49
Water Absorption	ISO 62	%	0.2	0.2
Relative Density	ISO 1883	-	1.19	1.19

PERSPEX[™] acrylic sheet

NB: (1) 5 mm/ m in, (2) 2 mm / min, (3) un-notched, (4) in 3 mm

Country	Product Type	Test	Result/ Class
France	Cast	NFP 92-307	M4
	Extruded	NFP 92-307	M4
Germany	Cast	DIN 4102	B2
	Extruded	DIN 4102	B2
Holland	Cast	NEN 6005	Class 3 surface spread of
	Extruded		flame
		NEN 6005	Class 4 contribution to
			flashover
United Kingdom	Cast	BS 476:Pt 7	Class 4 under 3mm
	Cast	BS 476:Pt 7	Class 3 for 3 mm and above
			Class 4 all thicknesses
	Extruded	BS 476: Pt 7	
United States	Cast	UL 94	НВ
	Extruded	UL 94	НВ

PERSPEX[™] cast acrylic sheet burns at rate similar to hard woods but with low smoke evolution. Encapsulation the edges of all PERSPEX[™] sheets into metal glazing profiles greatly reduces the ease of ignition.

Table 3 The Sound Reduction Index of PERSPEX [™] in d	ecibels (db))

Glazing Option	Sound Reduction Index (db)
1 x 3 mm PERSPEX	26
1 x 6 mm PERSPEX	32
1 x 8 mm PERSPEX	34
1 x 12 mm PERSPEX	35

To maximize the efficiency of double glazing it is important to minimize sound leakage within the glazing profile.

Table 4 The heat transfer coefficient (U value) of PERSPEX[™] and glass windows measured in W/m² °C

Glazing Option	Air Gap Between Panels	Heat Loss (U Value)	
		Glass	Perspex
3mm single pane	-	Ę	5.6 5.2
5 mm	-		5.5 4.9
3 mm	3 mm		4 3.6
3 mm	12 mm		3.1 2.9
3 mm	20 mm	2	2.9 2.7

Table 5 The thermal conductivity coefficient (K value) of PERSPEX[™] and glass

Units	Glass	Perspex
W m/M².°C	1.15	0.189

 Table 6 The minimum cold-bend radii for PERSPEX™ barrel vaults in temperate climates

Sheet Thickness	3	4	5	6
(mm)				
Cast PERSPEX	600	800	1000	1200
Extruded PERSPEX	900	1200	1500	1800

The above figures were originally derived from stress/ strain studies. From experience gained over 20 years it is known that if the minimum cold-bend radius is reduced further there is a greater risk of sheet crazing in service.

Table 7 The recommended thickness of cast and extruded PERSPEX[™] for barrel vaults where the barrel height is ½ span dimension

	Sheet width		
Barrel Span (mm)	1000 mm 2000 mm		
800	3 mm	4 mm	
1100	4 mm	5 mm	
1400	5 mm	5 mm	
1700	6 mm	6 mm	
2000	6 mm	8 mm	

Table 8 The recommended thickness of cast and extruded PERSPEX[™] for barrel vaults where the barrel height is ¼ span dimension

	Sheet width		
Barrel Span (mm)	1000 mm	2000 mm	
800	4 mm	5 mm	
1100	4 mm	5 mm	
1400	5 mm	6 mm	
1700	6 mm	8 mm	
2000	6 mm	8 mm	

Table 9 The recommended thickness of cast and extruded PERSPEX[™] for barrel vaults where the barrel height is 1/8 span dimension

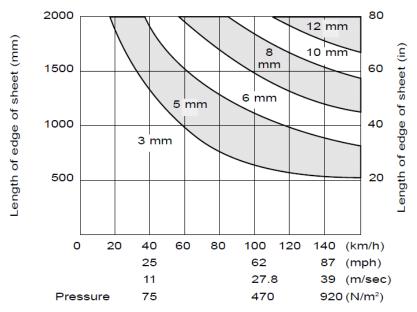
	Sheet width		
Barrel Span (mm)	1000 mm	2000 mm	
800	4 mm	6 mm	
1100	5 mm	6 mm	
1400	6 mm	8 mm	
1700	6 mm	8 mm	
2000	8 mm	10 mm	

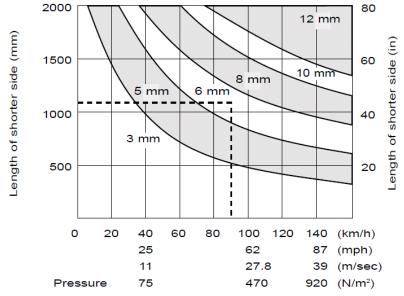
NB

All the above calculations have been based on an assumed wind load of 100 N/m².
 When using impact modified grades the above thicknesses should be increased to the next size.

 Table 10 The recommended thickness of cast and extruded PERSPEX™ for flat roofs

	Glazing Profiles spacing (mm)		
Roof Span (mm)	800	1000	1200
800	5 mm	6 mm	6 mm
1400	6 mm	8 mm	8 mm
2000	6 mm	8 mm	10 mm


The values for Table 10 assume a snow load of 750N/m².


Recommended thickness of PERSPEX™ for windows

The required thickness is dictated by two considerations. The first is the desired impact strength and the second is the wind loading which an external window must sustain. In most countries statutory requirements or codes of practice exist which specify wind loads for building structures and these must be followed. For example, in the United Kingdom, BS CP3 Chapter V Part 2 is the Code of Practice to be followed when designing windows or glazed structures.

Figures 3 and 4 give the recommended thicknesses of PERSPEX[™] for various wind loads when designing for square windows, with all edges fully supported

Figure 4 The recommended thicknesses of PERSPEX[™] for various wind loads when designing for rectangular windows, with all edges fully supported.

Example of the use of Figure 4

To determine the thickness of PERSPEX[™] that must be used for a window 1100 x 1520 mm with a wind load of 90km/h (380 N/m²), determine the point of intersection between wind load line and **shorter** panel size (see the dotted line). The recommended thickness is 6 mm.

NB: At the recommended thickness, the sheet can deflect under full wind load and it is therefore important to use the appropriate depth of rebate, as recommended in **Table 12**, to ensure the sheet remains firmly fixed in the frame.

Appendix Ш- Installation

Mounting Details

The preferred method of mounting PERSPEX[™] glazing is between metal frames. Aluminum profiles or glazing bars are generally acceptable and these can be obtained from your local PERSPEX[™] distributor, who will be able to give full advice on products available and the manufacturers recommended fixing methods.

As a general rule, PERSPEX[™] should be fixed in the frames with rubber profile sections as is the normal glazing practice. If preferred, flexible mastics may be used and *polysulphide* sealants have been found to be suitable for this purpose. Silicone sealants can be used but, as stated earlier, it is very important to use rubber profiles or sealants which are known to be compatible with acrylic sheet.

In the event of any doubt the manufacturer's advice should be sought first. When installing glazing in any frame system, two critical observations need to be taken into account:

- Thermal expansion clearance
- Rebate Depth

Thermal expansion clearance

PERSPEX[™] has a high thermal expansion coefficient compared to traditional glazing materials and allowance within the frames must be made in both directions for thermal expansion and contraction. Failure to observe this rule can lead to stresses in the sheet which can cause distortions in the panel and crazing at the edges of the sheet in time.

An allowance of 5 mm per meter run length should be allowed **in both dimensions** during installation. This figure has been found from long experience to be sufficient for all locations and climates.

Rebate depth

It follows from the above that the rebate depth must be sufficient to allow for the expansion clearance **and also the thermal contraction** that can take place in winter. Rebate depth must also be sufficient to prevent the sheet from being deflected out of the frame in gale force winds.

Figure 3 shows a typical profile assembly and **Table 12** the recommended rebate depth for various panel sizes, based on installation at 20 °C.

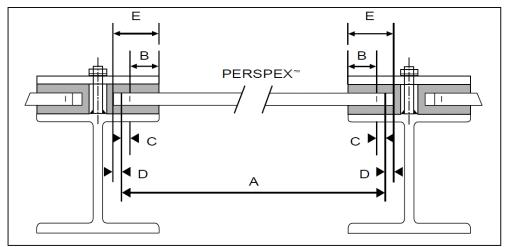


Figure 3 Mounting details for PERSPEX[™] glazing

Nominal Panel Size	Minimum Rebate	Contraction	Expansion	
А	Depth	Allowance	Allowance	Total Rebate
	В	С	D	E
1000 mm	30 mm	5 mm	5 mm	40 mm
2000 mm	35 mm	10 mm	10 mm	55 mm
3000 mm	40 mm	15 mm	15 mm	70 mm

